Abstract

Abstract This study examines the drag coefficient of an obstacle impacted by a 3D cohesive granular flow using a discrete element model. A specific numerical setup is used to carry out reproducible and controlled normal impact simulations, in which the upstream flow properties are fully controlled parameters. The micromechanical contact model involves the physical properties of friction, normal elastic–plastic repulsion, dissipation, and a normal cohesion factor that induces bulk cohesion in the granular assembly. The effect of cohesion on the obstacle load is investigated through a micro-scale analysis. We show that increasing the cohesion leads to an increase of the obstacle drag, through a densification of the contact network, which enhances the transmission of contact forces to the obstacle. This experiment is extended to a wide range of supercritical flows, with Froude numbers between 1.5 and 11.2. The resulting drag coefficient curves are represented as power law functions of the Froude number. We then demonstrate the dependency of the power law exponent on the ratio between inertia and gravitational forces. Our results suggest that the assessment of drag coefficient critical values by conventional avalanche protection guidelines could be improved by a mechanical consideration of cohesion for certain snow types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.