Abstract

The rapid degradation of “Xing'an-Baikal permafrost” in Northeast China has led to various road engineering problems. Efficient inspection and control of pavement quality are critical for maintaining the structural integrity of roads and driving safety in cold regions. Taking the Jagdaqi-Walagan section (JWS) of the Jagdaqi-Mo'he Highway as the object, based on field investigation, unmanned aerial vehicle images and airborne LiDAR data, combined with geographical information system, this study analyzed the pavement damage characteristics in mid- to high-latitude permafrost regions, including quantification of damage ratio, extraction of pavement cracks, and evaluation of pavement roughness and driving quality. The results showed that the average pavement damage ratio was 8.80 %, significantly higher in isolated permafrost regions. A higher damage rate in the Jagdaqi-Mo'he direction than the opposite, with a more concentrated cracking distribution. The worst pavement roughness and most severe pavement bumping at repetitive repair locations. This study provides an effective method for investigating pavement damages and analyzing their mechanisms, and explores the application potential of visible light images combined with LiDAR data in frozen soil engineering. The results provide a scientific basis for assessing current highway conditions, enabling scientific maintenance, and evaluating the risk of engineering damages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.