Abstract
In computed tomography (CT), a patient motion would result in degraded spatial resolution and image artifacts. To eliminate motion artifacts, this study presents a method to estimate the motion parameters from sinograms based on extended difference function. Based on our previous work, we first divide the projection data into two parts according to view angles and take Radon transform. Then, we calculate the extended difference functions and search for the minimum points. The relative displacements can be determined by the minimum points, and the motion can be estimated by the relationships between the relative displacements and motion parameters. Finally, we introduce the estimated parameters into the reconstruction process to compensate for the motion effects. The simulation results show that the running times can reduce by about 30% than our previous work. In phantom experiments, the relative mean rotation excursion (RMRE) and relative mean translation excursion (RMTE) of the new method are lower than the conventional Helgason-Ludwig consistency condition (HLCC) based method and comparable to our previous work. Compare with the HLCC method, the root mean square error (RMSE) of the new method also reduces, while the Pearson correlation coefficient (CC) and mean structural similarity index (MSSIM) increase. The proposed new method yields the improved performance on accuracy of motion estimation with higher computational efficiency, and thus it can produce high-quality images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.