Abstract

Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit equations for the folding angles of a flat-foldable degree-4 origami vertex and some cases of degree-6 vertices. We extend this work to generalized symmetries of the degree-6 vertex where all sector angles equal . We enumerate the different viable rigid folding modes of these degree-6 crease patterns and then use second-order Taylor expansions and prior rigid folding techniques to find algebraic folding angle relationships between the creases. This allows us to explicitly compute the configuration space of these degree-6 vertices, and in the process we uncover new explanations for the effectiveness of Weierstrass substitutions in modelling rigid origami. These results expand the toolbox of rigid origami mechanisms that engineers and materials scientists may use in origami-inspired designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.