Abstract
The regioselective hydrogenation of α, β-unsaturated carbonyl compounds is an extremely important transformation. However, its development is hampered by a lack of precise and efficient catalysts. In this work, triggered by the steric hindrance and confinement capacity of the catalyst, we designed a novel catalyst FLP/MIL-101(Cr), with the bulky frustrated Lewis pair (FLP) of PPh3 and B(C6F5)3 immobilized in NH2-MIL-101(Cr). In the well-tailored FLP/MIL-101(Cr), the promoted selective reduction behaviors were realized, with cinnamyl alcohol selectivity up to 99 % and the complete substrate conversion in cinnamyl aldehyde reduction. Experimental characterizations and theoretical calculations indicated that the CN bond and π-π stacking interaction between FLP and the organic ligand of MIL-101(Cr) implemented and reinforced a rigid structure. Compared with homogeneous FLP, the special nano-space in FLP/MIL-101(Cr) catalyst benefits the selective reduction behavior towards the unsaturated bond with the smaller steric hindrance in α,β-unsaturated carbonyl compounds. As expected, FLP/MIL-101(Cr) showed good stabilities of skeleton structure and catalytic performance. This contribution provides an ingenious strategy to design FLP heterogeneous catalysts and represents its utilization possibility in selective reduction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have