Abstract

BackgroundImpaired right ventricular (RV) pulmonary artery coupling has been associated with higher mortality in patients with chronic heart disease, but few studies have examined this metric in critically ill patients. We sought to evaluate the association between RV pulmonary artery coupling, defined by the ratio of tricuspid annular peak systolic tissue Doppler velocity (TASV)/estimated RV systolic pressure (RVSP), and mortality in cardiac intensive care unit patients.Methods and ResultsUsing a database of unique cardiac intensive care unit admissions from 2007 to 2018, we included patients with TASV/RVSP ratio measured within 1 day of hospitalization. Hospital mortality was analyzed using multivariable logistic regression, and 1‐year mortality was analyzed using multivariable Cox proportional‐hazards analysis. We included 4259 patients with a mean age of 69±15 years (40.1% women). Admission diagnoses included acute coronary syndrome in 56%, heart failure in 52%, respiratory failure in 24%, and cardiogenic shock in 12%. The mean TASV/RVSP ratio was 0.31±0.14, and in‐hospital mortality occurred in 7% of patients. Higher TASV/RVSP ratio was associated with lower in‐hospital mortality (adjusted unit odds ratio, 0.68 per each 0.1‐unit higher ratio; 95% CI, 0.58–0.79; P<0.001) and lower 1‐year mortality among hospital survivors (adjusted unit hazard ratio, 0.83 per each 0.1‐unit higher ratio; 95% CI, 0.77–0.90; P<0.001). Stepwise decreases in hospital and 1‐year mortality were observed in each higher TASV/RVSP quintile. The TASV/RVSP ratio remained associated with mortality after adjusting for left ventricular systolic and diastolic function.ConclusionsA low TASV/RVSP ratio is associated with increased short‐term and long‐term mortality among cardiac intensive care unit patients, emphasizing importance of impaired RV pulmonary artery coupling as a determinant of poor prognosis. Further study is required to determine whether interventions to optimize RV pulmonary artery coupling can improve outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.