Abstract

The most important determinant of long-term survival in patients with idiopathic pulmonary fibrosis is the right ventricular (RV) adaptation to the increased pulmonary vascular resistance. Our aim was to explore RV contractile reserve during stress echocardiography in early-stage IPF. Fifty early-stage patients with IPF and 50 healthy control patients underwent rest and stress echocardiography, including RV two-dimensional speckle tracking echocardiography. At peak exertion, blood gas analysis and spirometry were also assessed. At rest, RV diameters were mildly increased in IPF; however, although RV conventional systolic function indexes were similar between the IPF and control groups, RV global longitudinal strain and RV lateral wall longitudinal strain (LWLS) were significantly reduced in the IPF cohort. During physical exercise, patients with IPF showed a reduced exercise tolerance with lower maximal workload (P< .01), level of oxygen saturation (P< .001), and peak heart rate (P< .01). Systolic and diastolic BP values were similar in both groups. Systolic pulmonary artery pressure (PAPs) increase (ΔPAPs) during exertion was higher in IPF vshealthy subjects (P< .0001); RV LWLS increase (ΔRV LWLS) during exercise was lower in patients with IPF vscontrol patients (P< .00001). By multivariable analysis, RV LWLS at rest and ΔRV LWLS were directly related to peak exertion capacity, PAPs, and blood oxygen saturation level (Spo2; P< .0001). Δ RV LWLS was directly related to diffusion lung carbon monoxide (P< .0001). RV myocardial dysfunction is already present at rest in early-stage IPF and worsens during exertion as detected by two-dimensional speckle-tracking echocardiography. The RV altered contractile reserve appears to be related to reduced exercise tolerability and impaired pulmonary hemodynamic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.