Abstract
Abstract This paper presents a Riemannian optimal model order reduction method for general linear stable port-Hamiltonian systems based on the Riemannian trust-region method. We consider the $\mathcal{H}_2$ optimal model order reduction problem of the general linear port-Hamiltonian systems. The problem is formulated as an optimization problem on the product manifold, which is composed of the set of skew symmetric matrices, the manifold of the positive definite matrices, the manifold of the positive semidefinite matrices with fixed rank and the Euclidean space. To solve the optimal problem, the Riemannian geometry of the product manifold is given. Moreover, the Riemannian gradient and the Riemannian Hessian of the objective function are derived. Furthermore, we propose the Riemannian trust-region method for the optimization problem and introduce the truncated conjugate gradient method to solve the trust-region subproblem. Finally, the numerical experiments illustrate the efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IMA Journal of Mathematical Control and Information
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.