Abstract

This paper presents a unified controller design method for $H^2$ optimal control and model matching problems of linear port-Hamiltonian systems. The controller design problems are formulated as optimization problems on the product manifold of the set of skew symmetric matrices, the manifold of the symmetric positive definite matrices, and Euclidean space. A Riemannian metric is chosen for the manifold in such a manner that the manifold is geodesically complete, i.e., the domain of the exponential map is the whole tangent space for every point on the manifold. In order to solve these problems, the Riemannian gradients of the objective functions are derived, and these gradients are used to develop a Riemannian steepest descent method on the product manifold. The geodesic completeness of the manifold guarantees that all points generated by the steepest descent method are on the manifold. Numerical experiments illustrate that our method is able to solve the two specified problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.