Abstract
The main work of this paper is to study the soliton solutions and asymptotic behavior of the integrable reverse space-time nonlocal Sasa–Satsuma equation, which is derived from the coupled two-component Sasa–Satsuma system with a specific constraint. The soliton solutions of the nonlocal Sasa–Satsuma equation are constructed through solving the inverse scattering problems by Riemann–Hilbert method. Compared with local systems, discrete eigenvalues and eigenvectors of the reverse space-time nonlocal Sasa–Satsuma equation have novel symmetries and constraints. On the basis of these symmetry relations of eigenvalues and eigenvectors, the one-soliton and two-soliton solutions are obtained and the dynamic properties of these solitons are shown graphically. Furthermore, the asymptotic behaviors of two-soliton solutions are analyzed. All these results about physical features and mathematical properties may be helpful to comprehend nonlocal nonlinear system better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.