Abstract

Optical losses by reflection and transmission of the incident light should be reduced to improve the efficiency of solar cells. Compared with antireflection coatings, surface texturing is a more persistent and effective solution aiming at reducing light reflection losses. Alkali (NaOH, KOH) or acidic (HF, HNO3, CH3COOH) chemicals are used in conventional solar cell production lines for wet chemical texturing. However, Surface texturing is too difficult to apply to solar cell fabrication with thinner wafers due to the large amount of silicon loss caused by saw damage removal (SDR) and the texturing process for multicrystalline silicon (mc-Si). In order to solve the problems, reactive ion etching (RIE) has been applied for surface texturing of solar cell wafers. The RIE method can be effective in the reducing surface reflection with low silicon loss. In this study, we, therefore, fabricated a large-area (243.3 cm2) mc-Si solar cell by maskless surface texturing using a SF6/O2 RIE process. Also, we achieved a conversion efficiency (Eff), open circuit voltage (Voc), short circuit current density (Jsc) and fill factor (FF) as high as 17.2%, 616 mV, 35.1 mA/cm2, and 79.6%, respectively, which are suitable for fabricating thin crystalline silicon solar cells at low cost and with high efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.