Abstract
Food availability varies considerably over space and time in wetland systems, and consumers must be able to track those changes during energetically-demanding points in the life cycle like breeding. Resource tracking has been studied frequently among herbivores, but receives less attention among consumers of macroinvertebrates. We evaluated the change in resource availability across habitat types and time and the simultaneous density of waterfowl consumers throughout their breeding season in a high-elevation, flood-irrigated system. We also assessed whether the macroinvertebrate resource density better predicted waterfowl density across habitats, compared to consistency (i.e., temporal evenness) of the invertebrate resource or taxonomic richness. Resource density varied marginally across wetland types but was highest in basin wetlands (i.e., ponds) and peaked early in the breeding season, whereas it remained relatively low and stable in other wetland habitats. Breeding duck density was positively related to resource density, more so than temporal resource stability, for all species. Resource density was negatively related to duckling density, however. These results have the potential to not only elucidate mechanisms of habitat selection among breeding ducks in flood-irrigated landscapes but also suggest there is not a consequential trade-off to selecting wetland sites based on energy density versus temporal resource stability and that good-quality wetland sites provide both.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have