Abstract
The estimation of the mean matrix of the multivariate normal distribution is addressed in the high dimensional setting. Efron–Morris-type linear shrinkage estimators with ridge modification for the precision matrix instead of the Moore–Penrose generalized inverse are considered, and the weights in the ridge-type linear shrinkage estimators are estimated in terms of minimizing the Stein unbiased risk estimators under the quadratic loss. It is shown that the ridge-type linear shrinkage estimators with the estimated weights are minimax, and that the estimated weights and the loss function with these estimated weights are asymptotically equal to the optimal counterparts in the Bayesian model with high dimension by using the random matrix theory. The performance of the ridge-type linear shrinkage estimators is numerically compared with the existing estimators including the Efron–Morris and James–Stein estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.