Abstract
Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method to solve the problem of mode mixing caused by empirical mode decomposition (EMD). It is shown that the decomposition error tends to zero, as ensemble number increases to infinity in EEMD. In this paper, a novel EEMD-based ridge regression model (REEMD) is proposed, which solves the problem of mode mixing and achieves less decomposition error compared with the EEMD. When the ensemble number is small, the weights of outliers are constraint to zero to reduce the decomposition error in REEMD and the result of REEMD is asymptotic to that of EEMD, as the ensemble number increases. The proposed REEMD is suitable for tissue clutter rejection in color flow imaging system. Simulation shows that reasonable flow-frequency estimations can be achieved by REEMD and the estimation error limits to zero, as the flow frequency increases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have