Abstract
The reduction of rician noise from MR images without degradation of the underlying image features has attracted much attention and has a strong potential in several application domains including medical image processing. Interpretation of MR images is difficult due to their tendency to gain rician noise during acquisition. In this work, we proposed a novel selective non-local means algorithm for noise suppression of MR images while preserving the image features as much as possible. We have used morphological gradient operators that separate the image high frequency areas from smooth areas. Later, we have applied novel selective NLM filter with optimal parameter values for different frequency regions of image to remove the noise. A method of selective weight matrix is also proposed to preserve the image features against smoothing. The results of experimentation performed using proposed adapted selective filter prove the soundness of the method. We compared results with the results of many well known techniques presented in literature like NLM with optimized parameters, wavelet based de-noising and anisotropic diffusion filter and discussed the improvements achieved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have