Abstract

Very few studies concern the isotropic phase of Side-Chain Liquid-Crystalline Polymers (SCLCPs). However, the interest for the isotropic phase appears particularly obvious in flow experiments. Unforeseen shear-induced nematic phases are revealed away from the N-I transition temperature. The non-equilibrium nematic phase in the isotropic phase of SCLCP melts challenges the conventional timescales described in theoretical approaches and reveal very long timescales, neglected until now. This spectacular behavior is the starter of the present survey that reveals long range solid-like interactions up to the sub-millimetre scale. We address the question of the origin of this solid-like property by probing more particularly the non-equilibrium behavior of a polyacrylate substituted by a nitrobiphenyl group (PANO2). The comparison with a polybutylacrylate chain of the same degree of polymerization evidences that the solid-like response is exacerbated in SCLCPs. We conclude that the liquid crystal moieties interplay as efficient elastic connectors. Finally, we show that the “solid” character can be evidenced away from the glass transition temperature in glass formers and for the first time, in purely alkane chains above their crystallization temperature. We thus have probed collective elastic effects contained not only in the isotropic phase of SCLCPs, but also more generically in the liquid state of ordinary melts and of ordinary liquids.

Highlights

  • Shear flow is used in solid mechanics as well as in fluid dynamics

  • A splendid and unexpected birefringence emerges from the isotropic phase of side-chain liquid crystal polymer melts when they are sheared above a critical shear rate (

  • The confrontation of the timescales involved in the shear-induced phase has revealed that the scheme proposed by the ad hoc theoretical models based on a flow coupling to the lifetime of the orientational pre-transitional fluctuations is not valid

Read more

Summary

Introduction

Shear flow is used in solid mechanics as well as in fluid dynamics. The flow in liquids can be induced by the mechanical displacement of a surface in contact with the fluid (Figure 1). Since 2005, we have been working on, and demonstrating, that improved dynamic measurements enable access to this cohesive property via the identification of a low frequency shear elasticity (solid-like character) in the liquid state in various glass formers away from any phase transition [28,29,30,31,32] We apply this improved protocol first to the isotropic phase of the SCLCP, PANO2, compare it to an ordinary polymer chain (polybutylacrylate melt (PBuA)) of the same degree of polymerization, and examine the case of a short alkyl chain assimilated to a spacer: The heptadecane.

Experimental
Non-Monotonic Flow Curve
Identification of a Finite Low Frequency Solid-Like Response
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.