Abstract
Richardson extrapolation is used to improve the accuracy of the numerical solutions for the normal boundary flux and for the interior potential resulting from the boundary element method. The boundary integral equations arise from a direct boundary integral formulation for solving a Dirichlet problem for the Laplace equation. The Richardson extrapolation is used in two different applications: (i) to improve the accuracy of the collocation solution for the normal boundary flux and, separately, (ii) to improve the solution for the potential in the domain interior. The main innovative aspects of this work are that the orders of dominant error terms are estimated numerically, and that these estimates are then used to develop an a posteriori technique that predicts if the Richardson extrapolation results for applications (i) and (ii) are reliable. Numerical results from test problems are presented to demonstrate the technique.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have