Abstract
Rice microRNA168a (osa-miR168a) plays important roles in mediating flowering time, grain yield and vigor, seeding growth, and immunity by targeting the RNA-induced silencing complex component Argonaute 1 (AGO1). However, the functions of miR168a exerted by targeting other genes require further clarification before it could be used in rice molecular breeding. In this study, we identified a new target gene of osa-miR168a-5p (miR168a-5p) in rice called OsOFP3 (ovate family protein 3) and investigated the roles of miR168a-5p in response to brassinosteroids (BRs), salt stress, and nitrogen allocation. Up- and downregulated miR168a-5p expression respectively decreased and increased the expression of the BR-negative regulator OsOPF3. The results of RNA ligase-mediated rapid amplification of cDNA ends (5′RLM-RACE) revealed cleavage sites in OsOPF3 and OsNPF2.4 mRNAs. The phenotype of miR168a-5p transgenic rice was BR-associated and included the lamina bending response to BR, short seeds, and low 1000-grain weight. MicroRNA 168a-5p also regulated the expression of the nitrate transporter, OsNPF2.4, which affected nitrogen allocation, and regulated OsAGO1a expression in response to salt stress. Taken together, rice miR168a-5p regulates BR-associated pathways, nitrogen transport, and stress by targeting OsOFP3, OsNPF2.4, and OsAGO1a, respectively, resulting in a series of important agronomic traits for rice breeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.