Abstract

Plants often face high salinity as a significant environmental challenge with roots being the first responders to this stress. Maintaining K+/Na+ ratio within plant cells is crucial for survival, as the intracellular K+ level decreases and the intracellular Na+ level increases under saline conditions. However, knowledge about the molecular regulatory mechanisms of K+ loss in response to salt stress through outward-rectifying K+ channels in plants is largely unknown. In this study, we found that the Arabidopsis double mutant gorkskor, in which the GORK and SKOR genes are disrupted, showed an improved primary root growth under salt stress compared to wild-type (WT) and the gork and skor single-mutant plants. No significant differences in the sensitivity to mannitol stress between the WT and gorkskor mutant were observed. Accumulation of ROS induced by salt stress was reduced in the gorkskor roots. The gorkskor mutant seedlings had significantly higher K+ content, lower Na+ content, and a greater resultant K+/Na+ ratio than the WT under salt stress. Moreover, salt-stress-induced elevation of cytosolic free Ca2+ concentration was reduced in the gorkskor roots. Taken together, these results suggest that Arabidopsis Shaker-type outward-rectifying K+ channels GORK and SKOR may redundantly function in regulation of primary root growth under salt stress and are involved in not only the late-stage response (e.g. K+ leakage) but also the early response including ROS production and [Ca2+]cyt elevation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.