Abstract

Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10–40 nm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42 s) and recovery (40 s) towards ethanol at 300 K. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.