Abstract
Ricci-like solitons on Sasaki-like almost contact B-metric manifolds are the object of study. Cases, where the potential of the Ricci-like soliton is the Reeb vector field or pointwise collinear to it, are considered. In the former case, the properties for a parallel or recurrent Ricci-tensor are studied. In the latter case, it is shown that the potential of the considered Ricci-like soliton has a constant length and the manifold is $\eta$-Einstein. Other curvature conditions are also found, which imply that the main metric is Einstein. After that, some results are obtained for a parallel symmetric second-order covariant tensor on the manifolds under study. Finally, an explicit example of dimension 5 is given and some of the results are illustrated.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have