Abstract
Ribosomal proteins L2, L3 and L4, together with the 23S RNA, are the main candidates for catalyzing peptide bond formation on the 50S subunit. That L2 is evolutionarily highly conserved led us to perform a thorough functional analysis with reconstituted 50S particles either lacking L2 or harboring a mutated L2. L2 does not play a dominant role in the assembly of the 50S subunit or in the fixation of the 3'-ends of the tRNAs at the peptidyl-transferase center. However, it is absolutely required for the association of 30S and 50S subunits and is strongly involved in tRNA binding to both A and P sites, possibly at the elbow region of the tRNAs. Furthermore, while the conserved histidyl residue 229 is extremely important for peptidyl-transferase activity, it is apparently not involved in other measured functions. None of the other mutagenized amino acids (H14, D83, S177, D228, H231) showed this strong and exclusive participation in peptide bond formation. These results are used to examine critically the proposed direct involvement of His229 in catalysis of peptide synthesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have