Abstract

Sordarin derivatives are remarkably selective inhibitors of fungal protein synthesis. Available evidence points to a binding site for these inhibitors on elongation factor 2, but high affinity binding requires the presence of ribosomes. The gene mutated in one of the two isolated complementation groups of Saccharomyces cerevisiae mutants resistant to the sordarin derivative GM193663 has now been identified. It is RPP0, encoding the essential protein of the large ribosomal subunit stalk rpP0. Resistant mutants are found to retain most of the binding capacity for the drug, indicating that mutations in rpP0 endow the ribosome with the capacity to perform translation elongation in the presence of the inhibitor. Other proteins of the ribosomal stalk influence the expression of resistance, pointing to a wealth of interactions between stalk components and elongation factors. The involvement of multiple elements of the translation machinery in the mode of action of sordarin antifungals may explain the large selectivity of these compounds, even though the individual target components are highly conserved proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.