Abstract

The detection of trypsin and its inhibitors is important for both clinical diagnosis and disease treatment. Abnormal trypsin activity affects pancreatic function and leads to corresponding pathological changes in the body. Therefore, the study presented a riboflavin-induced photo-ATRP electrochemical assay of trypsin activity and its inhibitor, including detection of trypsin activity in real urine samples. Experiments were performed on indium tin oxide (ITO) electrodes modified with sulfhydryl groups of 3-mercaptopropionic acid, and target trypsin-specific cleavage of BSA-Au nanocluster (BSA-Au NCs) was followed by the modification of Au NCs to the electrodes using Au–S. The Au NCs immobilized monodeoxy-monomercapto-β-cyclodextrin@adamantan-2-amine (SH-β-CD@2-NH2-Ada) host-guest inclusion complexes to the electrode surfaces via Au–S. In a two-component photo-initiator system consisting of riboflavin as an initiator and ascorbic acid (AA) as a mild reducing agent under mild blue light radiation, a large number of electroactive substances were grafted onto the electrode surface to generate electrochemical signals. In addition, we have successfully realized the detection of clinical drug inhibitors of trypsin. The detection limit of the system is as low as 0.0024 ng/mL, which much littler than the average standard of trypsin in the patient's urine or serum. It's worth noting that this work will provide researchers with a different route to design electrochemical sensors based on non-covalent recognition strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.