Abstract

Riboflavin, which causes plants to produce reactive oxygen species (ROS) when exposed to light, is an excellent photosensitizer for biocidal reactions. This study explores the possible protective role of riboflavin against waterlogging stress in tobacco plants. Tobacco seedlings (4 weeks old) were divided into four groups and pretreated with 0, 0.2, 0.5 or 1.0 mM riboflavin for 1 week, after which all groups were exposed to waterlogging stress for 7 days. We observed delayed leaf senescence and extended survival time, suggesting that riboflavin can confer increased waterlogging tolerance to plants as compared with the control (0 mM riboflavin). Enhanced stomatal closure was observed in the riboflavin-pretreated tobacco. We evaluated the levels of oxidative damage (H2O2 and lipid peroxidation), antioxidant enzyme (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) activity and antioxidant metabolites (including ascorbate and glutathione) in tobacco leaves that were pretreated with riboflavin. However, the results show that riboflavin pretreatment caused a decrease in chlorophyll content, antioxidant enzyme activity and redox values (AsA/DHA and GSH/GSSG), while causing a significant increase in lipid peroxidation, H2O2 accumulation and total ascorbate or glutathione content. In addition, the survival time and stomatal aperture of riboflavin-treated plants were significantly modified by exogenous application of GSH, well-known ROS scavenger. To explain the stomatal closure observed in tobacco plants, we propose a “damage avoidance” hypothesis based on riboflavin-mediated ROS toxicity. The protective function of the photosensitizer riboflavin may be highly significant for farming in frequently waterlogged areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call