Abstract

The present study employed the neonatal rat isolated brainstem preparation to determine whether oral-motor rhythmical activity, a substrate for the complex behaviors of suckling and chewing, could be elicited in vitro by path application of excitatory amino acids (EAAs). Bath application of EAA agonists (kainate [KA], [+/-]-a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid [AMPA], N-methyl-D, L-aspartate [NMA]), in conjunction with the gamma-aminobutyric acid antagonist bicuculline, either failed to induce rhythmic activity (n = 17 preparations) or induced a low-amplitude, low-frequency burst discharge (< 1 Hz, n = 10 preparations) from the motor branches of the trigeminal nerves when the brainstem was contiguous from the spinomedullary junction to the superior colliculus. Burst activity was in most cases bilaterally synchronous. However, when a discrete coronal transection was made at the level of the facial colliculus, between the trigeminal and facial motor nuclei, the rhythmic bursts produced by the resultant 3- to 5-mm block of tissue following bath application of EAA agonists increased in amplitude and frequency (4-8 Hz, n = 35). Application of 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), a non-N-methyl-D-aspartate (non-NMDA) receptor antagonist, blocked the rhythm induced by non-NMDA receptor agonist (n = 4) but was less effective in suppressing NMA-induced rhythmicity. In contrast, D, L-2-amino-5-phosphonovaleric acid (APV) blocked by both NMA-induced (n = 5) and, in most cases, KA-induced (n = 5) rhythmicity, suggesting an essential role for NMA receptors in production of EAA-induced rhythmical oral-motor activity in the neonatal rat. The present data demonstrate that a narrow, bilaterally distributed region of brainstem surrounding the trigeminal motor nucleus contains sufficient neuronal circuitry for the production of oral-motor rhythmogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call