Abstract

This work determined if the ethylene dependent signal pathway was required for antagonist-mediated fruit defense mechanisms through investigation of disease resistance against Penicillium digitatum in Ponkan mandarin induced by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception, and Rhodosporidium paludigenum. Blocking ethylene perception with 1-MCP resulted in an increase in ACS1, ACS2 and ACO expression, and consequently an increase in ethylene production during mechanical wounding and resistance induction. The expression of the ethylene receptors ETR1, ETR2 and ETR4 as well as ethylene response factor (ERF) were observed with similar responses to yeast and 1-MCP stimuli, with ETR3 mRNA accumulation being the most sensitive to yeast application while ERS1 was the least sensitive. When applied at concentrations greater than 500nLL−1, 1-MCP pre-fumigation significantly reduced the fruit's natural protection and R. paludigenum induced disease resistance to Penicillium decay, indicating that ethylene perception was involved in inducting disease resistance. Moreover, expression of the defensive genes CHI, β-1,3-glucanase, PAL and CIN up-regulated by yeast was inhibited to different degrees by the 1-MCP pre-treatment. This study provides evidence that the biocontrol yeast R. paludigenum increased disease resistance in Ponkan mandarin against P. digitatum infection due to ethylene and signaling pathway dependent mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.