Abstract
Wounding is one of the most effective stress signals to induce ethylene synthesis in persimmon (Diospyros kaki Thunb.). We found that wound-induced ethylene biosynthesis is subjected to negative feedback regulation in mature 'Saijo' persimmon fruit since ethylene production was enhanced by 1-methylcyclopropene (1-MCP) (an inhibitor of ethylene perception) pretreatment, which was approximately 1.8 fold of that in control tissues (without 1-MCP pretreatment). Wound-induced 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and DK-ACS2 gene expression were substantially increased by 1-MCP pretreatment after 12 h, which resulted in much higher ACC content in 1-MCP pretreated tissues than that in a control after 24 h. These results indicated that wound-induced DK-ACS2 gene expression was negatively regulated by ethylene in mature persimmon fruit. However, 1-MCP pretreatment had no effect on DK-ACO1 gene expression, suggesting the independence of wound-induced DK-ACO1 on ethylene. Out of accord with DK-ACO1 gene expression, ACC oxidase activity was enhanced 48 h after wounding in 1-MCP pretreated tissues, reaching a peak 1.5-fold higher than that in control tissues at 60 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.