Abstract
Exploring the genetic resource of crops is one alternative way to utilize the less available phosphorus (P) in soils, and copy with the incoming shortage of rock phosphate (Rock P). Genotypic differences in low-P tolerance exist in many crop species and result from various physiological and morphological mechanisms. In this study, low-P tolerance of two maize genotypes that had been identified to have contrasting P efficiency (grain yield) in a calcareous soil was investigated. Parameters measured were biomass accumulation, root growth and root exudation of organic acids, root acid phosphatase (APase) activity, and rhizosphere pH under P-deficient (−P) and P-sufficient (+P) conditions in solution culture. The results showed that −P treatment increased root biomass (from 6th to the 15th day), root to shoot ratio, lateral root length, and APase activity in roots and on the root surface, but reduced root exudation of organic acids and pH in rhizosphere for both genotypes. The P-efficient line 181 had a larger root system in terms of root weight and lateral root length than the P-inefficient line 197 in both P treatments, indicating root morphology of line 181 is an advantageous but non-specific trait in adaptation to low P stress. Genotype 181, when grown with −P markedly reduced the pH of the solution and rizhosphere and increased the APase activity in the roots and on the root surfaces. Surprisingly, root exudation of organic acids was reduced by −P in both genotypes. Exudation rate of organic acids in 181 was lower than that of 197 under both P treatments. It was concluded that efficient use of P in the calcareous soil by 181 is related to its large root system, greater ability to acidify the rhizosphere, and positive response of APase production and excretion to low P conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have