Abstract

Container production of plants use substrates that are formulated to have adequate physical properties to sustain optimal plant growth; however, these properties can change over time as a result of substrate settling and root growth of the growing plant in the container. An apparatus (rhizometer) was developed that measures the changes caused by plant roots on physical properties of substrates during crop production in containers. The design of the rhizometer included a clear core, which allowed for observing and measuring a range of root system characteristics in situ, including total root length visible along the rhizometer. Physical properties of planted and fallow rhizometers were measured, and the effect of four species on substrate physical properties was determined. There was a general decrease in substrate total porosity and air space (AS) over time with both fallow and planted rhizometers as a result of both settling of the substrate and root growth into the substrate. Container capacity did not change over time with or without roots. Plants with large root systems such as Begonia ×hybrida acut. decreased AS over time, whereas plants of Rudbeckia hirta L. with a smaller root system did not have the same effect. Measured total root length was highly correlated to the total dry root mass of Tagetes erecta L. and Zinnia marylandica D.M. Spooner, Stimart & T. Boyle plants. This may allow tracing and measuring root lengths to be another (alternative) method to measure root systems. Planted rhizometers also allowed easy access for viewing the root system non-destructively, providing the ability to observe and measure root growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call