Abstract

In general, starch, as a complex carbohydrate, is the most economical energy source in aquaculture for its relatively low cost. However, excessive dietary levels of carbohydrate result in pathological conditions. An 8-week feeding trial with CT (control diet, containing 21% carbohydrate), HC (a high-carbohydrate diet, containing 50% carbohydrate) and HCR (a HC diet supplemented with 0.015% Rhizoma curcumae Longae) was performed to investigate the protective effect of curcumin on high-carbohydrate-induced hepatic oxidative stress and intestine lesion in juvenile Trachinotus ovatus. In the current study, HC group significantly decreased WGR, SGR, plasma CAT activity, intestinal C4 levels, hepatic Nrf2, Keap1, Bach1, HO1, CAT, and GPX mRNA expression as well as ZO-1, Occludin, and Claudin-3, TGF-β mRNA transcription levels, while the opposite was true for plasma AST activity, hepatic MDA contents, intestinal Claudin-15, NF-κB, IL-1β, IL-6, and TNF-α mRNA expression. In contrast with the HC group, the HCR group significantly increased the activities of hepatic CAT, SOD, intestinal C3, C4, IgG and LZM levels, hepatic Nrf2, Bach1, CAT, and GPX mRNA expression as well as intestinal ZO-1, Occludin, Claudin-3, TGF-β and IL-10 mRNA expression levels, but the opposite trend was found in plasma triglyceride content, hepatic lipid deposition, hepatic Keap1 mRNA level as well as intestinal NF-κB, IL-6. In conclusion, high-carbohydrate diet can cause detrimental effect on physiological health status in Trachinotus ovatus, while adding Rhizoma curcumae Longae can improve hepatic and intestinal health status via attenuating the oxidative stress, inflammation, and reducing lipid deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call