Abstract

A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.