Abstract

To explore the impact of microbial interactions on outcomes from three prevalent algorithms (Flux Balance Analysis (FBA), community FBA (cFBA), and SteadyCom) analyzing microbial community metabolic networks, five toy community models representing common microbial interactions were designed. These include commensalism, mutualism, competition, mutualism-competition, and commensalism-competition. Various scenarios, considering different biomass yields and substrate constraints, were examined for each type. In commensal communities, all algorithms consistently produced similar results. However, changes in biomass yields and substrate constraints led to variable abundances (0.33-0.8) and community growth rates (2-5 1/h) within a broad range. For competitive communities, all algorithms predicted growth of fastest-growing member. To comply with the natural coexistence of members, suboptimal solutions over optimal point are recommended. FBA faced challenges in modeling mutualism, consistently predicting growth of only one member. Although cFBA and SteadyCom resulted in a lower community growth rate, coexistence of both members were satisfied. In toy models with dual interactions, more realistic outcomes were achieved contrary to purely competitive model as the dependency fosters the coexistence which was missing in the competitive only scenarios. These findings emphasize the importance of algorithm choice based on specific microbial interaction types for reliable community behavior predictions.​.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.