Abstract

The direct write printing method has gained popularity in synthesizing scaffolds for tissue engineering. To achieve an excellent printability of scaffolds, a thorough evaluation of rheological properties is required. We report the synthesis, characterization, rheology, and direct-write printing of chitosan - graphene oxide (CH - GO) nanocomposite hydrogels at a varying concentration of GO in 3 and 4 wt% CH polymeric gels. Rheological characterization of CH - GO hydrogels shows that an addition of only 0.5 wt% of GO leads to a substantial increase in storage modulus (G′), viscosity, and yield stress of 3 and 4 wt% of CH hydrogels. A three-interval thixotropy test (3ITT) shows that 3 wt% CH with 0.5 wt% GO hydrogel has 94% recovery of G′ after 7 sequential stress cycles and is the best candidate for direct-write printing. Neuronal cell culture on 3 wt% CH with 0.5 wt% hydrogels reveals that GO promotes the differentiation of SH-SY5Y cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call