Abstract

AbstractPolymer gels are complex materials used in myriad applications and industries including foods, consumer products, and adhesives. We examine the rheology and adhesion characteristics of three fluorosilicone gels of varying equilibrium modulus. Adhesion is studied in terms of confinement and separation velocity or initial strain rate. Further, the role of debonding mechanism on the adhesion properties is also elucidated. At low initial strain rates or low degrees of confinement, interfacial failure dominates while at high initial strain rates or high degrees of confinement bulk cavitation is the dominant debonding mechanism. We also report for the first time a transition region where both interfacial failure and bulk cavitation are observed. The adhesion results are explained in light of the rheological properties of the gels examined. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014, 131, 40034.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call