Abstract

Quantitative measurements of soot concentration made in an oscillating propane-air counterflow diffusion flame are presented. The non-intrusive laser induced incandescence (LII) technique was used to make spatially and temporally resolved measurements of soot volume fraction in these transient flames as a function of initial steady strain rate, forcing frequency, and forcing amplitude of the strain rate fluctuation. The results of this study show that the soot formation process becomes insensitive to fluctuations in strain rate at high initial strain rates. At low initial strain rates, however, the maximum soot concentration is drastically reduced with high frequency, high amplitude fluctuations compared to the corresponding steady strain soot volume fraction. Low frequency oscillations are found to always increase the maximum soot concentration, by up to a factor of six for some conditions. These measurements provide important insight into the response of the chemistry control1ing the soot formation process in flamelets subject to unsteady rates of strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.