Abstract

With the development of minimally invasive surgical techniques, there is growing interest in the research and development of injectable biomaterials with controlled rheological properties. In this context, the rheological properties and injectability characteristics of an original CaCO 3 self-setting paste have been investigated. Two complementary rheometrical procedures have been established using a controlled stress rheometer to follow the structure build-up at rest or during gentle mixing and/or handling on the one hand, and the likely shear-induced breakdown of this structure at 25 or 35 °C on the other. The data obtained clearly show the influence of temperature on the development of a cement microstructure during setting, in all cases leading to a microporous cement made of an entangled network of aragonite-CaCO 3 needle-like crystals. Linear viscoelastic measurements arriving from an oscillatory shear at low deformation showed a progressive increase in the viscous modulus ( G′′) during paste setting, which is enhanced by an increase in temperature. In addition, steady shear measurements revealed the shear-thinning behaviour of this self-setting paste over an extended period after paste preparation and its ability to re-build through progressive paste setting at rest. The shear-thinning behaviour of this self-setting system was confirmed using the injectability system and a procedure we designed. The force needed to extrude a homogeneous and continuous column of paste decreases strongly upon injection and reaches a weight level to apply on the syringe piston around 2.5 kg, revealing the ease of injection of this CaCO 3 self-setting paste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.