Abstract

ABSTRACTA novel hydrosoluble sulfonate copolymer (SPAM) containing sulfonic acid groups was synthesized under mild conditions with Acrylamide (AM), 2-(Dimethylamino) ethyl methacrylate (DMAEMA) and 2-methyl-2-[(1-oxo-2-propenyl)amino]-1-propane sulfonic acid (AMPS) as monomers by segmentation initiation with 2,2'-azobis[2-methylpropionamidine] dihydrochloride and redox initiation system, respectively. The structures of copolymers were characterized by infrared (IR) spectroscopy, 1H NMR spectroscopy and thermogravimetric analysis. The rheological properties of the copolymer solution at different shear rate, temperature and salt concentration were investigated. The shear-tolerance, temperature-tolerance and salt-tolerance of the novel synthetic hydrosoluble sulfonate copolymer are improved remarkably compared with partially hydrolyzed polyacrylamide (HPAM). The synthetic copolymer solution possesses a higher viscosity retention rate (53.3%) than HPAM (35.3%) at the total salinity of 20000 mg/L when temperature changed from 30°C to 99°C. The enhanced oil recovery (EOR) of the synthetic copolymer was performed by core flood, and the EOR degree of the synthetic copolymer in the 20000 mg/L salt solution at 80°C was better than that of HPAM. Compared with HPAM flooding, the EOR with the synthetic copolymer flooding was increased by 6.8% at 80°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call