Abstract

Sustainable and “green” technologies, such as cold plasma are gaining attention in recent times for improving the functional properties of hydrocolloids. Chemical modifications of hydrocolloids require several chemicals and solvents, which are not environment-friendly. The major objective of the study was to understand the impact of plasma treatment (170–230 V|15 min) on the rheology of film-forming solutions (FFS) and the barrier properties of pectin films. The film-forming properties of plasma-treated pectin were investigated in the presence of two plasticizers, namely, glycerol and polyethylene glycol (PEG) 400. The effects of cross-linking by CaCl2 on the rheology of FFS and barrier properties of the films were discussed. A voltage-dependent decrease in the apparent viscosity of FFS was observed. The viscoelastic properties of the FFS were enhanced due to cross-linking. Glycerol exhibited a better plasticizing effect than PEG. Cross-linking and increasing voltage synergistically contributed towards lower oxygen and carbon dioxide transmission rates. The moisture sorption rate and capacity of the films increased with the voltage of the treatment. The resistance to extension of the films made from glycerol and PEG decreased with voltage, with no significant change in extensibility. On the other hand, the cross-linking by Ca2+ and plasma treatment enhanced the resistance to extension for the films made from both the plasticizers. While the increasing hydrophilicity and opacity of the films were a major drawback of plasma modification, the increase in UV barrier property of the films was an advantage of the modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.