Abstract

Abstract The aim of the present work is an approach towards the exploration of comprehension of rheological work on polymer composites synthesized by ex-situ dispersion of graphene oxide (GO) in poly(3-acrylamidopropyl trimethyl ammonium chloride (APTMACl) cationic hydrogel template. FTIR was carried out for confirmation of polymer synthesis and existence of GO in hydrogel network. The rheological investigation via frequency sweep curve (shear measurement) and oscillatory sweep (dynamic mechanical analysis) at different temperature 20, 25, 30, 35, 40 and 45 °C was performed. The storage (G′) and loss (G′′) moduli as a function of angular frequency, yield stress, tangent loss, damping factor and retention property were also studied to confirm the visco-elastomeric nature of the GO@p(APTMACl) composite and their semi solid response at different range of temperature. Various rheological models like Bingham model, modified Bingham model and Ostwald’s power law were applied. The temperature dependency was further tested via Arrhenius-Frenkel-Eyring equation. The sample showed best fitting in the modified Bingham model, which justified the pseudo plastic semi solid behavior of GO@p(APTMACl) composite within the linear visco-elastic region (LVER). All the properties from rheological study show best mechanical property and make the composite hydrogel good for drug delivery and for other environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.