Abstract

AbstractCyclomatrix phosphazene–triazine network polymers were synthesized by co‐curing a blend of tris(2‐allylphenoxy), triphenoxy cyclotriphosphazene (TAP), and tris(2‐allylphenoxy) s‐triazine (TAT) with bis(4‐maleimido phenyl) methane (BMM). The co‐curing of the three‐component resin was investigated by dynamic mechanical analysis using rheometry. The cure kinetics of the Diels–Alder step was studied by examining the evolution of the rheological parameters, such as storage modulus (G′), loss modulus (G″), and complex viscosity (η*), for resins of varying compositions at different temperatures. The curing conformed to an overall second‐order phenomenological equation, taking into account a self‐acceleration effect. The kinetic parameters were evaluated by multiple‐regression analysis. The absence of a definite trend in the cure process with blend composition ratio was attributed to the occurrence of a multitude of competitive reactions whose relative rates depend on the reactant ratio and the concentration of the products formed from the initial phase of reaction. The cure was accelerated by temperature for a given composition, whereas the self‐acceleration became less prominent at higher temperature. Gelation was accelerated by temperature. The gel conversion decreased with increase in maleimide concentration and, for a given composition, it was independent of the cure temperature. The activation energy for the initial reaction and the crosslinking process were estimated for a composition with a maleimide‐to‐allyl ratio of 2 : 1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 908–914, 2003

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.