Abstract
In order to increase the processability and mechanical properties of poly(vinyl chloride) (PVC), the terpolymer of acrylonitrile-chlorinated polyethylene-styrene (ACS) is used to modify the PVC. The plasticizing, rheological, and dynamic mechanical properties of PVC/ACS blends are investigated by means of torque rheometer, oscillation rheometer, and dynamic mechanical analyzer. The measurements of torque rheometer showed that both plasticizing time and stabilization torque are decreased with increasing ACS content. The PVC/ACS melts displayed larger dynamic storage modulus (G′), loss modulus (G′′), and complex viscosity (η*) than that of pure PVC, and these values reached maximum for the blend with 10 wt% ACS. When ACS content was below 10 wt%, PVC and ACS showed good compatibility in the blends by displaying a single T g; however, when ACS content was more than 15 wt%, the phase separation phenomena occurred in the blends. PVC/ACS blends showed larger storage modulus (E′) and loss modulus (E′′) than that of pure PVC, but these values decreased with increasing ACS content. ACS can enhance both tensile and impact strength of PVC, and the impact strength reached maximum with 15 wt% ACS content which is higher 2.5 kJ/m2 than the pure PVC. These results suggested that ACS is an efficient processing aid and toughening modifier for PVC at appropriate content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.