Abstract

The rheological behavior of blends of poly(methyl methacrylate) (PMMA) and poly(acrylonitrile-stat-styrene)-graft-polybutadiene (ABS) was investigated using a cone-and-plate rheometer. The rheological properties measured were shear stress (σ12), viscosity (η), and first normal stress difference (N1) as functions of shear rate (\documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma$ \end{document}) in steady shearing flow, and storage modulus (G′) and loss modulus (G″) as functions of frequency (ω) in oscillatory shearing flow. It has been found that the rheological behavior of blends of ABS and PMMA was very similar to that of blends of poly(styrene-stat-acrylonitrile) (SAN) and PMMA, in that N1 in logarithmic plots of N1 versus σ12, and G′ in logarithmic plots of G′ versus G″, vary regularly with blend composition. This has led us to conclude that the rubber particles that are grafted on an SAN resinous matrix in ABS resin plays only a minor role in influencing the compatibility of ABS/PMMA blends, and that the SAN chains attached to the surface of rubber particles, and the SAN matrix phase, play a major role in compatibilizing ABS resin with PMMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.