Abstract
The dynamic rheological behavior of a liquid crystalline polymer (LCP), Vectra™ A, and nylons was investigated. The viscosities of nylon 66 and nylon 6 decrease slowly with an increase in temperature, while the viscosity of Vectra A drops dramatically at 280 °C, but remains slightly changed above 300 °C. At constant frequency and above 300 °C, the mean value of the activation energy of Vectra A is about 87.0 kJ/mole, but jumps to a much higher value of about 407.0 kJ/mole if the melt temperature is below 300 °C. The activation energy of Vectra A above 300 °C is lower than nylon 66, which shows that the viscosity of nylon 66 has a greater temperature dependence than Vectra A. The viscosity ratio of Vectra A to Nylon 66 is less than 1 at temperatures higher than 290 °C, which indicates that Vectra A can form the fibrils in the nylon 66 matrix and reinforce nylon 66 when blending them above this temperature. Experimental data confirm our prediction. Copyright © 2000 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have