Abstract

Several innovative photopolymerizable siloxane-modified acrylic formulations were characterized, both in presence or absence of organically Boehmite (OMB) nanoparticles, in order to assess their rheological and kinetic behavior. The experimental formulations were mainly intended for the surface protection of porous stones or wood elements. The importance of the experimental investigation lies in the specific requirements necessary for the proposed applications, i.e. the innovative UV coatings developed should possess adequate viscosity, photopolymerization reaction rate and time. The kinetics of the radical photopolymerization mechanism, induced by UV radiations, was studied by calorimetric analysis and FTIR spectroscopy as function of the mixtures composition and test conditions (air or nitrogen atmosphere). The addition of a silane coupling agent or a high molecular weight polysiloxane monomer to the acrylic resin was found to reduce the heat of reaction. On the other hand, the presence of Boehmite nanoparticles in the UV photopolymerizable formulations does not seem to modify the reactivity of the siloxane-modified acrylic formulations. The effect of the presence of oxygen on the kinetic reaction was also investigated and correlated to the composition of the systems. Finally, the viscosity of the formulations was studied at ambient temperature with a parallel plates rheomether as a function of composition and shear rate. The viscosity curves were also fitted according to theoretical models as function of shear rate and composition, obtaining a good agreement between experimental data and model predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.