Abstract

The development of bio-inks capable of being 3D-printed into cell-containing bio-fabricates with sufficient shape fidelity is highly demanding. Structural integrity and favorable mechanical properties can be achieved by applying high polymer concentrations in hydrogels. Unfortunately, this often comes at the expense of cell performance since cells may become entrapped in the dense matrix. This drawback can be addressed by incorporating fibers as reinforcing fillers that strengthen the overall bio-ink structure and provide a second hierarchical micro-structure to which cells can adhere and align, resulting in enhanced cell activity. In this work, the potential impact of collagen-coated short polycaprolactone-fibers on cells after being printed in a hydrogel is systematically studied. The matrix is composed of eADF4(C16), a recombinant spider silk protein that is cytocompatible but non-adhesive for cells. Consequently, the impact of fibers could be exclusively examined, excluding secondary effects induced by the matrix. Applying this model system, a significant impact of such fillers on rheology and cell behavior is observed. Strikingly, it could be shown that fibers reduce cell viability upon printing but subsequently promote cell performance in the printed construct, emphasizing the need to distinguish between in-print and post-print impact of fillers in bio-inks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.