Abstract

3,4-Dihydroxy-L-phenylalanine (DOPA) serves as a post-translational modification amino acid present in mussel foot proteins. Mussels exploit the exceptional adhesive properties of DOPA to adhere to a wide range of surfaces. This study presents the development of sticky proteins and bacteria through the site-specific incorporation of DOPA using Genetic Code Expansion Technology. Through the optimization of the DOPA incorporation system, proteins containing DOPA demonstrate significantly improved binding abilities to various organic and metallic materials. The material-binding capabilities of DOPA to combat different types of biofoulings are harnessed by integrating it into intrinsically disordered proteins. Beyond the creation of adhesive proteins for anti-biofouling purposes, this highly efficient DOPA incorporation system is also applied to engineer adhesive bacteria, resulting in a remarkable increase in their binding capability to diverse materials including 400 folds of improvement to polyethylene terephthalate (PET). This substantial enhancement in PET binding of these bacteria has allowed to develop a unique approach for PET degradation, showcasing the innovative application of Genetic Code Expansion in cell engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.