Abstract
The scope of the triphenylsilyl perrhennate (O3ReOSiPh3, 1) catalyzed 1,3-isomerization of allylic alcohols has been thoroughly explored. It was found to be effective for a wide variety of secondary and tertiary allylic alcohol substrates bearing aryl, alkyl, and cyano substituents. Two general reaction types were found which gave high levels of product selectivity: those driven by formation of an extended conjugated system and those driven by selective silylation of a particular isomer. The efficiency of chirality transfer with various substrates was investigated, and conditions were found in which secondary and tertiary allylic alcohols could be formed with high levels of enantioselectivity. Consideration of selectivity trends with respect to the nature of the substituents around the allylic system revealed that this is a reliable and predictable method for allylic alcohol synthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have