Abstract

The abundance and distribution of dissolved Re (DRe) were determined in the freshwater part of the Krka River (Croatia), which drains a karst landscape, and in the salinity gradient of its highly stratified estuary. Due to the low DRe concentration, a batch procedure consisting of a pre-concentration step using an anion exchange resin (Dowex) and analysis of DRe in 8M HNO3 eluate using high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS) was applied. Due to potentially inconsistent recoveries, which ranged from 60 to 87%, quantification was performed using the isotope dilution technique (ID). DRe concentrations in the Krka River increased downstream, from 6.2pM at the spring site to 11.9pM upstream of the estuary region. Weathering of the surrounding carbonate lithology is assumed to be the source of the natural Re. Two specific anomalies were registered: a strong increase in DRe concentration due to anthropogenic input near the town of Knin (27.5pM) and a decrease at a downstream site caused by subsurface input of freshwater from the Zrmanja River, resulting in a relatively low DRe concentration (8.5pM). In the estuarine region, a near-conservative behavior of DRe was found in the salinity gradient of the upper surface layer, with DRe concentrations ranging from 18 to 38pM. Anthropogenic input was suspected within the estuarine segment near the urban area, causing a small positive deviation from the conservative line. In the bottom seawater layer, a minor decrease in DRe concentration in the most upstream estuarine regions was apparent, implying weak scavenging of Re.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.