Abstract
Recently, a large number of studies have indicated that circRNAs with covalently closed loops play important roles in biological processes and have potential as diagnostic biomarkers. Therefore, research on the circRNA-disease relationship is helpful in disease diagnosis and treatment. However, traditional biological verification methods require considerable labor and time costs. In this paper, we propose a new computational method (RGCNCDA) to predict circRNA-disease associations based on relational graph convolutional networks (R-GCNs). The method first integrates the circRNA similarity network, miRNA similarity network, disease similarity network and association networks among them to construct a global heterogeneous network. Then, it employs the random walk with restart (RWR) and principal component analysis (PCA) models to learn low-dimensional and high-order information from the global heterogeneous network as the topological features. Finally, a prediction model based on an R-GCN encoder and a DistMult decoder is built to predict the potential disease-associated circRNA. The predicted results demonstrate that RGCNCDA performs significantly better than the other six state-of-the-art methods in a 5-fold cross validation. Furthermore, the case study illustrates that RGCNCDA can effectively discover potential circRNA-disease associations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have